Skip to main content
Log in

Biomechanical evaluation of porous bioactive ceramics after implantation: micro CT-based three-dimensional finite element analysis

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite ceramics have been widely investigated for bone regeneration due to their high biocompatibility. However, few studies focus on their mechanical characteristics after implantation. In this study, the finite element (FE) method was used to evaluate the mechanical properties of a fully interconnected porous hydroxyapatite (IPHA) over time of implantation. Based on the micro-CT images obtained from the experiments dealing with IPHA implanted into rabbit femoral condyles, three-dimensional FE models of IPHA (1, 5, 12, 24, and 48 weeks after implantation) were developed. FE analysis indicated that the elastic modulus gradually increased from 1 week and reached the peak value at 24 weeks, and then it kept at high level until 48 weeks postoperatively. In addition, as a local biomechanical response, strain energy density became to distribute evenly over time after the implantation. Results confirmed that the mechanical properties of IPHA are strongly correlated to bone ingrowth. The efficiency of the proposed numerical approach was validated in combination with experimental studies, and the feasibility of applying this approach to study such implanted porous bioceramics was proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res. 2002;59:110–7.

    Article  CAS  Google Scholar 

  2. Iwai T, Harada Y, Imura K, Iwabuchi S, Murai J, Hiramatsu K, Myoui A, Yoshikawa H, Tsumaki N. Low-intensity pulsed ultrasound increases bone ingrowth into porous hydroxyapatite ceramic. J Bone Miner Metab. 2007;25:392–9.

    Article  Google Scholar 

  3. Ng AM, Tan KK, Phang MY, Aziyati O, Tan GH, Isa MR, Aminuddin BS, Naseem M, Fauziah O, Ruszymah BH. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone. J Biomed Mater Res A. 2008;85:301–12.

    Google Scholar 

  4. Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Org. 2005;8:131–6.

    Article  CAS  Google Scholar 

  5. Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater. 2007;8:116–23.

    Article  CAS  Google Scholar 

  6. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med. 1999;10:111–20.

    Article  CAS  Google Scholar 

  7. Omae H, Mochizuki Y, Yokoya S, Adachi N, Ochi M. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics. J Biomed Mater Res A. 2006;79:329–37.

    Google Scholar 

  8. Cyster LA, Grant DM, Howdle SM, Rose FR, Irvine DJ, Freeman D, Scotchford CA, Shakesheff KM. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials. 2005;26:697–702.

    Article  CAS  Google Scholar 

  9. Yamasaki N, Hirao M, Nanno K, Sugiyasu K, Tamai N, Hashimoto N, Yoshikawa H, Myoui A. A comparative assessment of synthetic ceramic bone substitutes with different composition and microstructure in rabbit femoral condyle model. J Biomed Mater Res B Appl Biomater. 2009;91:788–98.

    Google Scholar 

  10. Yoshida Y, Osaka S, Tokuhashi Y. Clinical experience of novel interconnected porous hydroxyapatite ceramics for the revision of tumor prosthesis: a case report. World J Surg Oncol. 2009;7:76.

    Article  Google Scholar 

  11. Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials. 2004;25:1683–96.

    Article  CAS  Google Scholar 

  12. Lacroix D, Chateau A, Ginebra MP, Planell JA. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials. 2006;27:5326–34.

    Article  CAS  Google Scholar 

  13. Sandino C, Planell JA, Lacroix D. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech. 2008;41:1005–14.

    Article  CAS  Google Scholar 

  14. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials. 2007;28:5544–54.

    Article  CAS  Google Scholar 

  15. Sturm S, Zhou S, Mai YW, Li Q. On stiffness of scaffolds for bone tissue engineering–a numerical study. J Biomech. 2010;43:1738–44.

    Article  Google Scholar 

  16. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 2007;40:1745–53.

    Article  Google Scholar 

  17. Sepulveda P, Binner JG, Rogero SO, Higa OZ, Bressiani JC. Production of porous hydroxyapatite by the gel-casting of foams and cytotoxic evaluation. J Biomed Mater Res A. 2000;50:27–34.

    Article  CAS  Google Scholar 

  18. He LH, Standard OC, Huang TT, Latella BA, Swain MV. Mechanical behaviour of porous hydroxyapatite. Acta Biomater. 2008;4:577–86.

    Article  CAS  Google Scholar 

  19. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.

    Article  CAS  Google Scholar 

  20. Boccaccini AR, Fan Z. A new approach for the Young’s modulus-porosity correlation of ceramic materials. Ceram Int. 1997;23:239–45.

    Article  CAS  Google Scholar 

  21. Luo J, Stevens R. Porostity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceram Int. 1999;25:281–6.

    Article  CAS  Google Scholar 

  22. Pabst W, Gregorová E, Tichá G. Elasticity of porous ceramics–a critical study of modulus-porosity relations. J Eur Ceram Soc. 2006;26:1085–97.

    Article  CAS  Google Scholar 

  23. Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38:377–99.

    Article  Google Scholar 

  24. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  CAS  Google Scholar 

  25. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19:133–9.

    Article  CAS  Google Scholar 

  26. De Aza PN, Luklinska ZB, Santos C, Guitian F, De Aza S. Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials. 2003;24:1437–45.

    Article  Google Scholar 

  27. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. J Mater Sci Mater Med. 1999;10:663–70.

    Article  CAS  Google Scholar 

  28. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194:1174–6.

    Article  CAS  Google Scholar 

  29. Kienapfel H, Sprey C, Wilke A, Griss P. Implant fixation by bone ingrowth. J Arthroplast. 1999;14:355–68.

    Article  CAS  Google Scholar 

  30. Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA. Biomechanical assessment of bone ingrowth in porous hydroxyapatite. J Mater Sci Mater Med. 1997;8:731–6.

    Article  CAS  Google Scholar 

  31. Trécant M, Delécrin J, Royer J, Goyenvalle E, Daculsi G. Mechanical changes in macro-porous calcium phosphate ceramics after implantation in bone. Clin Mater. 1994;15:233–40.

    Article  Google Scholar 

  32. Martin RB, Chapman MW, Sharkey NA, Zissimos SL, Bay B, Shors EC. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials. 1993;14:341–8.

    Article  CAS  Google Scholar 

  33. Hernandez CJ, Beaupré GS, Keller TS, Carter DR. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone. 2001;29:74–8.

    Article  CAS  Google Scholar 

  34. Fyhrie DP, Vashishth D. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone. 2000;26:169–73.

    Article  CAS  Google Scholar 

  35. Liu X, Niebur GL. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol. 2008;7:335–44.

    Article  Google Scholar 

  36. Sanz-Herrera JA, García-Aznar JM, Doblaré M. On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater. 2009;5:219–29.

    Article  CAS  Google Scholar 

  37. Ruimerman R, Van Rietbergen B, Hilbers P, Huiskes R. The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation. Ann Biomed Eng. 2005;33:71–8.

    Article  CAS  Google Scholar 

  38. Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405:704–6.

    Article  CAS  Google Scholar 

  39. Nogueira LP, Braz D, Barroso RC, Oliveira LF, Pinheiro CJ, Dreossi D, Tromba G. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation. Micron. 2010;41:990–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by The Grant-in-Aid for Highly Functional Interface Science: Innovation of Biomaterials with Highly Functional Interface to Host and Parasite from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Mei Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, LM., Arahira, T., Todo, M. et al. Biomechanical evaluation of porous bioactive ceramics after implantation: micro CT-based three-dimensional finite element analysis. J Mater Sci: Mater Med 23, 463–472 (2012). https://doi.org/10.1007/s10856-011-4469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4469-2

Keywords

Navigation