Skip to main content
Log in

Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To define stress distribution patterns inside a bone around suture anchors inserted at different angles using a three-dimensional finite element (FE) method.

Methods

An isotropic cube model (Young’s modulus, 1,380 MPa; Poisson’s ratio, 0.3) was designed on a computer to standardize analysis conditions. A virtual Twinfix anchor was inserted into the cube at two different angles (45° and 90°) against the top surface. A traction force (100 N) was applied to the anchor at six different angles (15°, 30°, 45°, 60°, 75° and 90°) against the top surface. Elastic analysis was performed, and the distribution of the von Mises equivalent stress inside the cube was calculated. The highest value of the equivalent stress at each traction angle was compared between the 45° and 90° anchor insertion settings.

Results

Stress concentration was most evident around proximal anchor threads, particularly on the traction side. Interestingly, stress gradually declined with an increase in traction angle only for the 90° insertion setting. At 15° and 90° traction angles, the equivalent stress was lower for the 45° insertion setting than for the 90° insertion setting. In contrast, the 90° insertion setting exhibited lower equivalent stress than the 45° insertion setting at 30°, 45° and 60° traction angles.

Conclusions

Insertion of an anchor at 90° might reduce the stress concentration around the proximal anchor threads on the traction side and provide lower equivalent stress in the middle range of traction angles (30°–60°) than insertion at 45°. This could avoid early postoperative anchor failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barber FA, Herbert MA, Coons DA, Boothby MH (2006) Sutures and suture anchors—update 2006. Arthroscopy 22:1063–1069

    Article  PubMed  Google Scholar 

  2. Barber FA, Herbert MA, Beavis RC, Oro FB (2008) Sutures anchor materials, eyelets, and designs: update 2008. Arthroscopy 24:859–867

    Article  PubMed  Google Scholar 

  3. Benson EC, MacDermid JC, Drosdowech DS, Athwal GS (2010) The incidence of early metallic suture anchor pullout after arthroscopic rotator cuff repair. Arthroscopy 26:310–315

    Article  PubMed  Google Scholar 

  4. Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K (2004) Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture. J Orthop Sci 9:545–550

    Article  PubMed  Google Scholar 

  5. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753

    Article  PubMed  Google Scholar 

  6. Bhatia DN, de Beer JF, van Rooyen KS (2007) The bony partial articular surface tendon avulsion lesion: an arthroscopic technique for fixation of the partially avulsed greater tuberosity fracture. Arthroscopy 23:786.e1–786.e6

    Article  Google Scholar 

  7. Burkhart SS (1995) The deadman theory of suture anchors: observations along a south Texas fence line. Arthroscopy 11:119–123

    Article  PubMed  CAS  Google Scholar 

  8. Burkhart SS, Lo IKY (2006) Arthroscopic rotator cuff repair. J Am Acad Orthop Surg 14:333–346

    PubMed  Google Scholar 

  9. Dalstra M, Huiskes R, van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117:272–278

    Article  PubMed  CAS  Google Scholar 

  10. Gartsman GM (2001) Arthroscopic rotator cuff repair. Clin Orthop Relat Res 390:95–106

    Article  PubMed  Google Scholar 

  11. Kirchhoff C, Braunstein V, Milz S, Sprecher CM, Fischer F, Tami A, Ahrens P, Imhoff AB, Hinterwimmer S (2010) Assessment of bone quality within the tuberosities of the osteoporotic humeral head: relevance for anchor positioning in rotator cuff repair. Am J Sports Med 38:564–569

    Article  PubMed  Google Scholar 

  12. Liporace FA, Bono CM, Caruso SA, Weiner B, Penny K, Feldman AJ, Grossman MG, Haher TR (2002) The mechanical effects of suture anchor insertion angle for rotator cuff repair. Orthopedics 25:399–402

    PubMed  Google Scholar 

  13. Mahar AT, Tucker BST, Upasani VV, Oka RS, Pedowitz RA (2005) Increasing the insertion depth of suture anchors for rotator cuff repair does not improve biomechanical stability. J Shoulder Elbow Surg 14:626–630

    Article  PubMed  Google Scholar 

  14. Meyer DC, Fucentese SF, Koller B, Gerber C (2004) Association of osteopenia of the humeral head with full-thickness rotator cuff tears. J Should Elbow Surg 13:333–337

    Article  Google Scholar 

  15. Park HB, Keyurapan E, Gill HS, Selhi HS, McFarland EG (2006) Suture anchors and tacks for shoulder surgery, part II: the prevention and treatment of complications. Am J Sports Med 34:136–144

    Article  PubMed  CAS  Google Scholar 

  16. Pietschmann MF, Fröhlich V, Ficklscherer A, Hausdorf J, Utzschneider S, Jansson V, Müller PE (2008) Pullout strength of suture anchors in comparison with transosseous sutures for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 16:504–510

    Article  PubMed  Google Scholar 

  17. Pietschmann MF, Fröhlich V, Ficklscherer A, Gülecyüz MF, Wegener B, Volkmar Jansson V, Müller PE (2009) Suture anchor fixation strength in osteopenic versus non-osteopenic bone for rotator cuff repair. Arch Orthop Trauma Surg 129:373–379

    Article  PubMed  Google Scholar 

  18. Sakaguchi RL, Borgersen SE (1995) Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implant 10:295–302

    CAS  Google Scholar 

  19. Sano H, Yamashita T, Wakabayashi I, Itoi E (2007) Stress distribution in the supraspinatus tendon after the tendon repair: suture anchors versus transosseous suture fixation. Am J Sports Med 35:542–546

    Article  PubMed  Google Scholar 

  20. Scheibel MT, Habermeyer P (2003) A modified Mason–Allen technique for rotator cuff repair using suture anchors. Arthroscopy 19:330–333

    Article  PubMed  Google Scholar 

  21. Seki N, Itoi E, Shibuya Y, Wakabayashi I, Sano H, Sashi R, Minagawa H, Yamamoto N, Abe H, Kikuchi K, Okada K, Shimada Y (2008) Mechanical environment of the supraspinatus tendon: three-dimensional finite element model analysis. J Orthop Sci 13:348–353

    Article  PubMed  Google Scholar 

  22. Spazzin AO, Abreu RT, Noritomi PY, Consani RL, Mesquita MF (2011) Evaluation of stress distribution in overdenture-retaining bar with different levels of vertical misfit. J Prosthodont 20:280–285

    Article  PubMed  Google Scholar 

  23. Strauss E, Frank D, Kubiak E, Kummer F, Rokito A (2009) The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman’s angle revisited. Arthroscopy 25:597–602

    Article  PubMed  Google Scholar 

  24. Tao SS, Kaltenbach J (2006) Arthroscopic placement of a modified Mason–Allen stitch. Arthroscopy 22:1248.e1–1248.e3

    Article  Google Scholar 

  25. Tingart MJ, Apreleva M, Zurakowski D, Warner JJ (2003) Pullout strength of suture anchors used in rotator cuff repair. J Bone Joint Surg Am 85:2190–2198

    Article  PubMed  Google Scholar 

  26. Tingart MJ, Apreleva M, Lehtinen J, Zurakowski D, Warner JJ (2004) Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med 32:1466–1473

    Article  PubMed  Google Scholar 

  27. Wakabayashi I, Itoi E, Sano H, Shibuya Y, Sashi R, Minagawa H, Kobayashi M (2003) Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J Should Elbow Surg 12:612–617

    Article  Google Scholar 

  28. Yamada M, Briot J, Pedrono A, Sans N, Mansat P, Mansat M, Swider P (2007) Age- and gender-related distribution of bone tissue of osteoporotic humeral head using computed tomography. J Should Elbow Surg 16:596–602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, H., Takahashi, A., Chiba, D. et al. Stress distribution inside bone after suture anchor insertion: simulation using a three-dimensional finite element method. Knee Surg Sports Traumatol Arthrosc 21, 1777–1782 (2013). https://doi.org/10.1007/s00167-012-2060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-2060-0

Keywords

Navigation