Skip to main content

Advertisement

Log in

Analysis for Predictors of Failure of Orthodontic Mini-implant Using Patient-Specific Finite Element Models

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we analyzed the clinical factors and mechanical parameters for predicting orthodontic mini-implant (OMI) failure in the mandible, which has different properties from the maxilla. A patient-specific finite element analysis was applied to 32 OMIs (6 failures and 26 successes) implanted between the mandibular second premolars and first molars used for anchorage. The peak stress and strain parameters were calculated for each sample. A logistic regression of the failure (vs. success) of OMIs on the mechanical parameters in the models was conducted. In addition, the influence of clinical factors on the mechanical parameters considered to be related to OMI failure was examined by a regression analysis. The mechanical parameter which best predicts OMI failure in the mandible was found to be a minimum principal strain of between 0.5 to 1.0 mm from the OMI surface (R2 = 0.8033). The results indicate the patient's bone density, distance between the OMIs and adjacent root, and vertical implantation angle of the OMIs are potential clinical predictors of OMI failure in the mandible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Albogha, M. H., T. Kitahara, M. Todo, H. Hyakutake, and I. Takahashi. Predisposing factors for orthodontic mini-implant failure defined by bone strains in patient-specific finite element models. Ann. Biomed. Eng. 44:2948–2956, 2016.

    Article  PubMed  Google Scholar 

  2. Albogha, M. H., T. Kitahara, M. Todo, H. Hyakutake, and I. Takahashi. Maximum principal strain as a criterion for prediction of orthodontic mini-implants failure in subject-specific finite element models. Angle Orthod. 86:24–31, 2016.

    Article  PubMed  Google Scholar 

  3. Ammar, H. H., P. Ngan, R. J. Crout, V. H. Mucino, and O. M. Mukdadi. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 139:e59-71, 2011.

    Article  PubMed  Google Scholar 

  4. Basha, A. G., R. Shantaraj, and S. B. Mogegowda. Comparative study between conventional en-masse retraction (sliding mechanics) and en-masse retraction using orthodontic micro implant. Implant Dent. 19:128–136, 2010.

    Article  PubMed  Google Scholar 

  5. Cheng, S. J., I. Y. Tseng, J. J. Lee, and S. H. Kok. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int. J. Oral Maxillofac. Implants. 19:100–106, 2004.

    PubMed  Google Scholar 

  6. Chugh, T., S. V. Ganeshkar, A. V. Revankar, and A. K. Jain. Quantitative assessment of interradicular bone density in the maxilla and mandible: implications in clinical orthodontics. Progr. Orthodont. 14:1–8, 2013.

    Article  Google Scholar 

  7. Cong, A., J. O. Buijs, and D. Dragomir-Daescu. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Med. Eng. Phys. 33:164–173, 2011.

    Article  PubMed  Google Scholar 

  8. Cozzani, M., L. Nucci, D. Lupini, H. Dolatshahizand, D. Fazeli, E. Barzkar, E. Naeini, and A. Jamilian. The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: a 3D-FEM study. Int. Orthod. 18:503–508, 2020.

    Article  PubMed  Google Scholar 

  9. Deguchi, T., M. Nasu, K. Murakami, T. Yabuuchi, H. Kamioka, and T. Takano-Yamamoto. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am. J. Orthod. Dentofacial Orthop. 129(721):e727–e712, 2006.

    Google Scholar 

  10. Erbay Elibol, F. K., E. Oflaz, E. Bugra, M. Orhan, and T. Demir. Effect of cortical bone thickness and density on pullout strength of mini-implants: an experimental study. Am. J. Orthod. Dentofacial Orthop. 157:178–185, 2020.

    Article  PubMed  Google Scholar 

  11. Farnsworth, D., P. E. Rossouw, R. F. Ceen, and P. H. Buschang. Cortical bone thickness at common miniscrew implant placement sites. Am. J. Orthodont. Dentofacial Orthop. 139:495–503, 2011.

    Article  Google Scholar 

  12. Fernandes, D. J., C. N. Elias, and A. C. O. Ruellas. Influence of screw length and bone thickness on the stability of temporary implants. Materials (Basel). 8:6558–6569, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Goulet, R. W., S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27:375–389, 1994.

    Article  CAS  PubMed  Google Scholar 

  14. Harikrishnan, R., R. Subhashree, S. B. Ganesh, and V. Ashok. Relation between bone density and primary stability in the posterior mandibular region in patients undergoing dental implant treatment: a retrospective study. J. Long Term Eff. Med. Implants. 31:71–79, 2021.

    Article  PubMed  Google Scholar 

  15. He, Y., Y. Wang, X. Wang, J. Wang, D. Bai, and Y. Guo. Nonsurgical treatment of a hyperdivergent skeletal Class III patient with mini-screw-assisted mandibular dentition distalization and flattening of the occlusal plane. Angle Orthod. 92:287–293, 2022.

    Article  PubMed  Google Scholar 

  16. Hirai, Y., K. Watanabe, T. Deguchi, K. Ueda, K. Hamada, and E. Tanaka. Influence of insertion depth on stress distribution in orthodontic miniscrew and the surrounding bone by finite element analysis. Dent. Mater. J. 40:1270–1276, 2021.

    Article  PubMed  Google Scholar 

  17. Ikenaka, R., S. Koizumi, T. Otsuka, and T. Yamaguchi. Effects of root contact length on the failure rate of anchor screw. J. Oral Sci. 21:536, 2022.

    Google Scholar 

  18. Inaba, M. Evaluation of primary stability of inclined orthodontic mini-implants. J. Oral Sci. 51:347–353, 2009.

    Article  PubMed  Google Scholar 

  19. Iraeus, J., L. Lundin, S. Storm, A. Agnew, Y. S. Kang, A. Kemper, D. Albert, S. Holcombe, and B. Pipkorn. Detailed subject-specific FE rib modeling for fracture prediction. Traffic Inj Prev. 20:S88–S95, 2019.

    Article  PubMed  Google Scholar 

  20. Jasmine, M. I., A. A. Yezdani, F. Tajir, and R. M. Venu. Analysis of stress in bone and microimplants during en-masse retraction of maxillary and mandibular anterior teeth with different insertion angulations: A 3-dimensional finite element analysis study. Am. J. Orthod. Dentofacial Orthop. 141:71–80, 2012.

    Article  PubMed  Google Scholar 

  21. Keaveny, T. M. Cancellous bone. In: Handbook of Biomaterial Properties, edited by J. Black, and G. Hastings. London: Chapman Hall, 1998, pp. 15–23.

    Chapter  Google Scholar 

  22. Kuroda, S., M. Inoue, H. M. Kyung, J. H. Koolstra, and E. Tanaka. Stress distribution in obliquely inserted orthodontic miniscrews evaluated by three-dimensional finite-element analysis. Int. J. Oral Maxillofac. Implants. 32:344–349, 2017.

    Article  PubMed  Google Scholar 

  23. Lam, R., M. S. Goonewardene, B. P. Allan, and J. Sugawara. Success rates of a skeletal anchorage system in orthodontics: A retrospective analysis. Angle Orthod. 88:27–34, 2018.

    Article  PubMed  Google Scholar 

  24. Lee, D. W., J. H. Park, R. C. Bay, S. K. Choi, and J. M. Chae. Cortical bone thickness and bone density effects on miniscrew success rates: A systematic review and meta-analysis. Orthod. Craniofac. Res. 24(Suppl 1):92–102, 2021.

    Article  PubMed  Google Scholar 

  25. Liu, Y., Z. J. Yang, J. Zhou, P. Xiong, Q. Wang, Y. Yang, Y. Hu, and J. T. Hu. Comparison of anchorage efficiency of orthodontic mini-implant and conventional anchorage reinforcement in patients requiring maximum orthodontic anchorage: A systematic review and meta-analysis. J. Evid. Based Dent. Pract.20:101401, 2020.

    Article  PubMed  Google Scholar 

  26. Mohammed, H., K. Wafaie, M. Z. Rizk, M. Almuzian, R. Sosly, and D. R. Bearn. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: A systematic review and meta-analysis. Prog. Orthod. 19:36, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Motoyoshi, M., S. Ueno, K. Okazaki, and N. Shimizu. Bone stress for a mini-implant close to the roots of adjacent teeth–3D finite element analysis. Int. J. Oral Maxillofac. Surg. 38:363–368, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. Motoyoshi, M., T. Yoshida, A. Ono, and N. Shimizu. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int. J. Oral Maxillofac. Implants. 22:779–784, 2007.

    PubMed  Google Scholar 

  29. Natali, A. N., et al. Mechanics of bone tissue. In: Dental Biomechanics, edited by A. N. Natali, et al., . London: CRC Press, 2003, pp. 1–19.

    Chapter  Google Scholar 

  30. Pramudita, J. A., W. Hiroki, T. Yoda, and Y. Tanabe. Variations in strain distribution at distal radius under different loading conditions. Life (Basel). 12:1–8, 2022.

    Google Scholar 

  31. Ruse, N. D. Propagation of erroneous data for the modulus of elasticity of periodontal ligament and gutta percha in FEM/FEA papers: A story of broken links. Dental Mater. 24:1717–1719, 2008.

    Article  CAS  Google Scholar 

  32. Sato, R., T. Sato, I. Takahashi, J. Sugawara, and N. Takahashi. Profiling of bacterial flora in crevices around titanium orthodontic anchor plates. Clin. Oral Implants Res. 18:21–26, 2007.

    Article  PubMed  Google Scholar 

  33. Schatzle, M., R. Mannchen, M. Zwahlen, and N. P. Lang. Survival and failure rates of orthodontic temporary anchorage devices: A systematic review. Clin. Oral Implants Res. 20:1351–1359, 2009.

    Article  PubMed  Google Scholar 

  34. Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41:356–367, 2008.

    Article  PubMed  Google Scholar 

  35. Tatli, U., M. Alraawi, and M. S. Toroglu. Effects of size and insertion angle of orthodontic mini-implants on skeletal anchorage. Am. J. Orthod. Dentofacial Orthop. 156:220–228, 2019.

    Article  PubMed  Google Scholar 

  36. Thanissorn, C., J. Guo, D. JingYingChan, B. Koyi, O. Kujan, N. Khzam, and L. A. Miranda. Success rates and complications associated with single immediate implants: A systematic review. Dent J (Basel). 10:31, 2022.

    Article  PubMed  Google Scholar 

  37. Viceconti, M., R. Muccini, M. Bernakiewicz, M. Baleani, and L. Cristofolini. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J. Biomech. 33:1611–1618, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, X. D., J. N. Zhang, D. W. Liu, F. F. Lei, W. T. Liu, Y. Song, and Y. H. Zhou. Nonsurgical correction using miniscrew-assisted vertical control of a severe high angle with mandibular retrusion and gummy smile in an adult. Am. J. Orthod. Dentofacial Orthop. 151:978–988, 2017.

    Article  PubMed  Google Scholar 

  39. Yepez, J. E., R. M. Marangon, A. Y. Saga, K. F. de Lima, and O. M. Tanaka. Miniscrew composition, transmucosal profile, and cortical bone thickness: A three-dimensional finite-element analysis of stress fields. J. Contemp. Dent. Pract. 19:881–887, 2018.

    Article  PubMed  Google Scholar 

  40. Yoon, J. H., J. Y. Cha, Y. J. Choi, W. S. Park, S. S. Han, and K. J. Lee. Simulation of miniscrew-root distance available for molar distalization depending on the miniscrew insertion angle and vertical facial type. PLoS ONE. 15:e0239759, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, L., Z. Xu, X. Wei, Z. Zhao, Z. Yang, L. Zhang, J. Li, and T. Tang. Effect of placement angle on the stability of loaded titanium microscrews: A microcomputed tomographic and biomechanical analysis. Am. J. Orthod. Dentofacial Orthop. 139:628–635, 2011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Institute of Applied Mechanics, Kyushu University.

Conflict of interest

The authors declare no potential conflicts of interest with respect to this article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Takahashi.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toriya, T., Kitahara, T., Hyakutake, H. et al. Analysis for Predictors of Failure of Orthodontic Mini-implant Using Patient-Specific Finite Element Models. Ann Biomed Eng 51, 594–603 (2023). https://doi.org/10.1007/s10439-022-03067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03067-z

Keywords

Navigation