Skip to main content

Advertisement

Log in

Hinge fractures reaching the tibial plateau can be caused by forcible opening of insufficient posterior osteotomy during open-wedge high tibial osteotomy

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The purpose of this study was to use the finite element method (FEM) to reproduce fracture lines that reach the lateral tibial plateau during open-wedge high tibial osteotomy (OWHTO) in patients with Type III lateral hinge fracture (LHF). It was hypothesized that the FEM could clarify biomechanical causes of Type III LHF, enabling prevention of adverse complications.

Methods

This study used the nonlinear FEM to analyze the data of eight knees in eight patients (two males and six females) with Type III LHF among 82 patients who underwent OWHTO, as well as the data of eight individuals with no LHF. To predict the onset of Type III LHF, simulation models were also developed in which posterior osteotomy sufficiency varied from 50% to perfect, the latter defined as osteotomy reaching the hinge point.

Results

Real-life instances of Type III LHF caused by insufficient posterior osteotomy were reproduced in all patient-specific FEM models, and these models accurately predicted fracture types and locations. During opening of the osteotomy gap, the fracture line reached the lateral tibial plateau, and extended vertically from the end of the insufficient posterior osteotomy, avoiding the rigid proximal tibiofibular joint. In contrast, sufficient posterior osteotomy resulted in a lack of LHF. Posterior osteotomy extension ≥ 70% of the width of the osteotomy plane was the cut-off value to prevent Type III LHF.

Conclusion

Forced opening of insufficient posterior osteotomy was found to be a biomechanical cause of Type III LHF that extended perpendicularly to the lateral tibial plateau, avoiding the proximal tibiofibular joint. The clinical significance of this study is that sufficient posterior osteotomy during OWHTO, defined as at least 70% of the width of the osteotomy plane, can prevent Type III LHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219

    Article  Google Scholar 

  2. Akizuki S, Shibakawa A, Takizawa T, Yamazaki I, Horiuchi H (2008) The long-term outcome of high tibial osteotomy: a ten- to 20-year follow-up. J Bone Joint Surg Br 90:592–596

    Article  CAS  PubMed  Google Scholar 

  3. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753

    Article  PubMed  Google Scholar 

  4. Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S et al (2004) Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture. J Orthop Sci 9:545–550

    Article  PubMed  Google Scholar 

  5. Boström A, Amin AK, Macpherson GJ, Pankaj P, Scott CEH (2021) Hinge location and apical drill holes in opening wedge high tibial osteotomy: a finite element analysis. J Orthop Res 39:628–636

    Article  PubMed  Google Scholar 

  6. Dexel J, Fritzsche H, Beyer F, Harman MK, Lützner J (2017) Open-wedge high tibial osteotomy: incidence of lateral cortex fractures and influence of fixation device on osteotomy healing. Knee Surg Sports Traumatol Arthrosc 25:832–837

    Article  PubMed  Google Scholar 

  7. Diffo Kaze A, Maas S, Hoffmann A, Pape D (2017) Mechanical strength assessment of a drilled hole in the contralateral cortex at the end of the open wedge for high tibial osteotomy. J Exp Orthop 4:23

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C et al (2011) Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng 39:742–755

    Article  PubMed  Google Scholar 

  9. Edwards WB, Troy KL (2012) Finite element prediction of surface strain and fracture strength at the distal radius. Med Eng Phys 34:290–298

    Article  PubMed  Google Scholar 

  10. Ehlinger M, Ollivier M, Course S, Guerin A, Lantz É, Zahraa D et al (2019) Effect of saw blade geometry on crack initiation and propagation on the lateral cortical hinge for HTO: finite element analysis. Orthop Traumatol Surg Res 105:1079–1083

    Article  PubMed  Google Scholar 

  11. Espregueira-Mendes JD, da Silva MV (2006) Anatomy of the proximal tibiofibular joint. Knee Surg Sports Traumatol Arthrosc 14:241–249

    Article  CAS  PubMed  Google Scholar 

  12. Fujii H, Kuroyanagi N, Kanazawa T, Yamamoto S, Miyachi H, Shimozato K (2017) Three-dimensional finite element model to predict patterns of pterygomaxillary dysjunction during Le Fort I osteotomy. Int J Oral Maxillofac Surg 46:564–571

    Article  CAS  PubMed  Google Scholar 

  13. Han SB, Choi JH, Mahajan A, Shin YS (2019) Incidence and predictors of lateral hinge fractures following medial opening-wedge high tibial osteotomy using locking plate system: better performance of computed tomography scans. J Arthroplasty 34:846–851

    Article  PubMed  Google Scholar 

  14. Hwang DH, Zum Gahr KH (2003) Transition from static to kinetic friction of unlubricated or oil lubricated steel/steel, steel/ceramic and ceramic/ceramic pairs. Wear 255:365–375

    Article  CAS  Google Scholar 

  15. Kaneko TS, Pejcic MR, Tehranzadeh J, Keyak JH (2003) Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions. Med Eng Phys 25:445–454

    Article  PubMed  Google Scholar 

  16. Kang KT, Koh YG, Lee JA, Lee JJ, Kwon SK (2020) Biomechanical effect of a lateral hinge fracture for a medial opening wedge high tibial osteotomy: finite element study. J Orthop Surg Res 15:63

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keyak JH, Lee IY, Skinner HB (1994) Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J Biomed Mater Res 28:1329–1336

    Article  CAS  PubMed  Google Scholar 

  18. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB (2001) Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 23:657–664

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, Allaire R, Harner CD (2010) Vascular safety during high tibial osteotomy: a cadaveric angiographic study. Am J Sports Med 38:810–815

    Article  PubMed  Google Scholar 

  20. Kuriyama S, Morimoto N, Shimoto T, Takemoto M, Nakamura S, Nishitani K et al (2019) Clinical efficacy of preoperative 3D planning for reducing surgical errors during open-wedge high tibial osteotomy. J Orthop Res 37:898–907

    Article  PubMed  Google Scholar 

  21. Lee OS, Lee YS (2018) Diagnostic value of computed tomography and risk factors for lateral hinge fracture in the open wedge high tibial osteotomy. Arthroscopy 34:1032–1043

    Article  PubMed  Google Scholar 

  22. Lee SC, Kim SJ, Jung KA, Choi DH, Hwang BY (2013) An early sign of intraarticular fracture of the lateral tibial plateau during opening wedge high tibial osteotomy. Knee 20:66–68

    Article  PubMed  Google Scholar 

  23. Lee SS, Celik H, Lee DH (2018) Predictive factors for and detection of lateral hinge fractures following open wedge high tibial osteotomy: plain radiography versus computed tomography. Arthroscopy 34:3073–3079

    Article  PubMed  Google Scholar 

  24. Lee SS, Nha KW, Lee DH (2019) Posterior cortical breakage leads to posterior tibial slope change in lateral hinge fracture following opening wedge high tibial osteotomy. Knee Surg Sport Traumatol Arthrosc 27:698–706

    Article  Google Scholar 

  25. Lee YS, Lee BK, Kim WS, Choi JS, Baek JR, Moon CW (2014) Sagittal and coronal plane location of the popliteal artery in the open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 22:2629–2634

    Article  PubMed  Google Scholar 

  26. Lee YS, Moon GH (2015) Comparative analysis of osteotomy accuracy between the conventional and devised technique using a protective cutting system in medial open-wedge high tibial osteotomy. J Orthop Sci 20:129–136

    Article  CAS  PubMed  Google Scholar 

  27. Lee YS, Won JS, Oh WS, Park HG, Lee BK (2014) Lateral tibial bone mineral density around the level of the proximal tibiofibular joint. Knee Surg Sports Traumatol Arthrosc 22:1678–1683

    Article  PubMed  Google Scholar 

  28. Lobenhoffer P, Agneskirchner JD (2003) Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 11:132–138

    Article  PubMed  Google Scholar 

  29. Martin R, Birmingham TB, Willits K, Litchfield R, Lebel ME, Giffin JR (2014) Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am J Sports Med 42:1118–1126

    Article  PubMed  Google Scholar 

  30. Matsuda S, Mizu-uchi H, Miura H, Nagamine R, Urabe K, Iwamoto Y (2003) Tibial shaft axis does not always serve as a correct coronal landmark in total knee arthroplasty for varus knees. J Arthroplasty 18:56–62

    Article  PubMed  Google Scholar 

  31. Matsuura Y, Kuniyoshi K, Suzuki T, Ogawa Y, Sukegawa K, Rokkaku T et al (2014) Accuracy of specimen-specific nonlinear finite element analysis for evaluation of distal radius strength in cadaver material. J Orthop Sci 19:1012–1018

    Article  PubMed  Google Scholar 

  32. Matsuura Y, Rokkaku T, Kuniyoshi K, Takahashi K, Suzuki T, Kanazuka A et al (2017) Smith’s fracture generally occurs after falling on the palm of the hand. J Orthop Res 35:2435–2441

    Article  PubMed  Google Scholar 

  33. Miura M, Nakamura J, Matsuura Y, Wako Y, Suzuki T, Hagiwara S et al (2017) Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study. BMC Musculoskelet Disord 18:536

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nakamura R, Komatsu N, Murao T, Okamoto Y, Nakamura S, Fujita K et al (2015) The validity of the classification for lateral hinge fractures in open wedge high tibial osteotomy. Bone Joint J 97:1226–1231

    Article  PubMed  Google Scholar 

  35. Ogawa H, Matsumoto K, Akiyama H (2017) The prevention of a lateral hinge fracture as a complication of a medial opening wedge high tibial osteotomy. Bone Joint J 99:887–893

    Article  PubMed  Google Scholar 

  36. Rabl W, Haid C, Krismer M (1996) Biomechanical properties of the human tibia: fracture behavior and morphology. Forensic Sci Int 83:39–49

    Article  CAS  PubMed  Google Scholar 

  37. Sancho JM, Planas J, Cendón DA, Reyes E, Gálvez JC (2007) An embedded crack model for finite element analysis of concrete fracture. Eng Fract Mech 74:75–86

    Article  Google Scholar 

  38. Spahn G (2004) Complications in high tibial (medial opening wedge) osteotomy. Arch Orthop Trauma Surg 124:649–653

    Article  PubMed  Google Scholar 

  39. Takeuchi R, Ishikawa H, Kumagai K, Yamaguchi Y, Chiba N, Akamatsu Y et al (2012) Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy 28:85–94

    Article  PubMed  Google Scholar 

  40. Tsubone T, Toba N, Tomoki U, Arakawa D, Iiyama T, Hara N et al (2019) Prediction of fracture lines of the calcaneus using a three-dimensional finite element model. J Orthop Res 37:483–489

    Article  PubMed  Google Scholar 

  41. Türkmen F, Kaçıra BK, Özkaya M, Erkoçak ÖF, Acar MA, Özer M et al (2017) Comparison of monoplanar versus biplanar medial opening-wedge high tibial osteotomy techniques for preventing lateral cortex fracture. Knee Surg Sports Traumatol Arthrosc 25:2914–2920

    Article  PubMed  Google Scholar 

Download references

Funding

This research study did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Kuriyama.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Ethical approval

All procedures were in accordance with the ethical standards set by our institutional research committee.

Informed consent

Informed consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Movie 1 Fracture line extension of one case example is shown. The wedge-shaped chisel (gray material) is gradually pushed into the osteotomy gap. At an opening angle of 4°, critical intra-articular fracture occurs (MP4 1120 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, Y., Kuriyama, S., Maeda, T. et al. Hinge fractures reaching the tibial plateau can be caused by forcible opening of insufficient posterior osteotomy during open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 31, 1533–1545 (2023). https://doi.org/10.1007/s00167-021-06816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06816-0

Keywords

Navigation